Dynamic Coronary 320-Row CT Angiography Using Low-Dose Contrast and Temporal Maximum Intensity Projection: A Comparison with Standard Coronary CT Angiography

Tsukasa Kojima1, Yuzo Yamasaki2, Takeshi Kamitani3, Hidetake Yabuuchi4, Takashi Shirasaka1, Yamato Shimomiya5, Masatoshi Kondo1, Hiroshi Hamasaki1, Toyoyuki Kato1, Michinobu Nagao6, Hiroshi Honda3

1 Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
2 Departments of Molecular Imaging & Diagnosis, 3 Clinical Radiology, 4 Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
5 Department of Clinical Application, Ziosoft Inc., Tokyo, Japan
6 Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women’s Medical University, Tokyo, Japan

Objective: The smallest diagnostically sufficient amount of contrast media (CM) should be used for coronary computed tomographic angiography (CCTA) to minimize the risk of contrast-induced nephrotoxicity in elderly patients with coronary artery disease. The purpose of this study was to propose dynamic-CCTA using a low dose of CM and temporal maximum intensity projection (TMIP) and to investigate its image quality compared to standard-CCTA.

Materials and Methods: Participants comprised 30 patients with coronary artery disease who underwent dynamic-CCTA and standard-CCTA using 320-row CT. Dynamic-CCTA was continuously performed at mid-diastole throughout 15–25 cardiac cycles after bolus injection of CM [103 mg iodine/kg body weight (mgI/kg)]. TMIP-CCTA was reconstructed from three-phase dynamic-CCTA data, including a phase with peak enhancement of the ascending aorta. Standard-CCTA was performed using a standard CM dose (259 mgI/kg). Image quality of both TMIP-CCTA and standard-CCTA was analyzed.

Results: The amount of CM used in TMIP-CCTA and standard-CCTA was 16.2 ± 2.6 mL and 40.1 ± 7.3 mL, respectively. The mean effective radiation dose was not significantly different between the two methods. Mean coronary attenuation was significantly lower for TMIP-CCTA than standard-CCTA [346.9 ± 82.8 Hounsfield units (HU) vs. 455.4 ± 75.3 HU, p<0.05]. Image noise was significantly lower for TMIP-CCTA than standard-CCTA (20.0 ± 3.2 HU vs. 28.1 ± 3.6 HU, p<0.05). There were no differences in signal-to-noise ratio and visual assessment scores between the two methods.

Conclusion: TMIP-CCTA can be performed using more than 50% less CM with the same image quality as standard-CCTA.

Key words: Computed tomography angiography · Contrast media · Coronary artery disease · Cardiac imaging technique.
INTRODUCTION

Coronary computed tomography angiography (CCTA) is a well-known and reliable method for detecting coronary stenosis in patients with coronary artery disease (CAD) [1]. However, increased attention has been paid to the amount of injected contrast media (CM) for CCTA. Contrast-induced nephrotoxicity (CIN), an acute kidney injury caused by iodinated CM, is the third most common cause of hospital-acquired acute renal injury, representing about 12% of cases [2-4]. The smallest diagnostically sufficient amount of CM should be used, especially in patients with chronic kidney disease (CKD), because CIN is closely related to pre-existing renal insufficiency [5] and the delivered amount of CM [6]. As the rate of CKD is significantly higher in patients with CAD [7] and they may require repeated CT and conventional angiographic studies for clinical management, a reduction in CM dose is particularly important in these patients. However, CCTA protocols that deliver smaller amounts of CM do not provide sufficient and homogeneous enhancement of the coronary arteries [8].

In this study, we focused on temporal maximum intensity projection (TMIP) processing, which was used to reconstruct CT angiography images from CT perfusion data [9]. This processing method displays maximal enhancement over time [10]. Therefore, we hypothesized that TMIP combined with dynamic CCTA for the whole heart [heart-dynamic CT (DCT)] would reduce the CM dose and yield sufficient image quality. We postulated that this reconstruction protocol would increase contrast enhancement in the coronary artery and reduce image noise compared to DCT protocol for coronary evaluation only.

The purpose of this study was to propose dynamic-CCTA using low-dose CM and TMIP and to investigate image quality in comparison to standard-CCTA.

MATERIALS AND METHODS

Study population

Thirty patients who had undergone heart-DCT and standard-CCTA (SCCTA) with 320-row CT between February 2017 and July 2017 were prospectively enrolled as a part of routine care. All patients had been clinically referred for suspected CAD. The exclusion criteria were as follows: 1) previous coronary bypass surgery; 2) contraindications to nitroglycerin or CM; 3) heart rate >65 bpm; 4) body mass index (BMI) greater than 25 kg/m². The study protocol was reviewed and approved by the Institutional Review Board (28-283); the study was conducted in accordance with the Declaration of Helsinki. Informed consent was obtained from all patients. Patient characteristics are summarized in Table 1. Body surface area (BSA) was estimated using the Mosteller formula [11].

Heart-DCT

CT examinations were performed using a 320-row CT scanner (Aquilion One Vision Edition; Canon Medical Systems, Tokyo, Japan). Heart-DCT was performed at 75% of the R-R interval (mid-diastole) for 15–25 cardiac cycles with prospective ECG-gating axial scanning for 20 s from 7 s after a 4-s CM injection (25.9 mgI/kg/sec) (Iopamiron370; Bayer HealthCare) through a 20-gauge cannula in the right antecubital vein. Contrast administration was followed by a 4-s injection of saline delivered at the same injection rate as the CM. The patients held their breath on inspiration during scanning. CM: contrast media.

Table 1. Characteristics of 30 patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male: female ratio</td>
<td>15:15</td>
</tr>
<tr>
<td>Age (years)</td>
<td>61.5±12.1</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>53.5±4.8</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>60.2±11.9</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>21.3±3.3</td>
</tr>
<tr>
<td>BSA (m²)</td>
<td>1.22±0.72</td>
</tr>
</tbody>
</table>

Data are presented as the mean±standard deviation, BSA was estimated with Mosteller formula [11]. BSA: body surface area

Fig. 1. Time chart of dynamic CCTA for whole heart DCT (heart-DCT). Heart-DCT was performed in mid-diastole for 15–25 cardiac cycles with prospective ECG-gating for 20 s beginning 7 s after a 4-s CM injection (25.9 mgI/kg/sec) (Iopamiron370; Bayer HealthCare) through a 20-gauge cannula in the right antecubital vein. Contrast administration was followed by a 4-s injection of saline delivered at the same injection rate as the CM. The patients held their breath on inspiration during scanning. CM: contrast media.
injection (103 mgI/kg) (Iopamiron370; Bayer HealthCare, Osaka, Japan) through a 20-gauge cannula in the right antecubital vein (Fig. 1). Contrast administration was followed by a 4-s injection of saline solution delivered at the same injection rate as the CM. The patients held their breath on inspiration during scanning. Bae has reported that the time to peak aortic enhancement from the start of a 5-s injection is about 12 s in a porcine aorta [12]. Fleischmann reported that the time to peak aortic enhancement at an injection rate of 4 mL/s of 16 mL of CM is about 20 s [13]. The scan onset time and duration were determined on the basis of prior experimental studies so as not to miss out on the peak point for the ascending aorta during heart-DCT. All patients received sublingual nitroglycerin before the CT study. The scan parameters for heart-DCT were: collimation, 320×0.5 mm; gantry rotation time, 0.275 s; tube potential, 80 kVp; tube current, 100 mA; and z-coverage, 160 mm. The image reconstruction parameters for heart-DCT were: reconstructed field of view, 200 mm; slice thickness, 0.5 mm; section interval, 0.25 mm. Heart-DCT images acquired with half-scan were reconstructed with a forward projected model-based iterative reconstruction solution (FIRST) (“cardiac standard” setting).

SCCTA
SCCTA was performed using prospective ECG-triggered axial scans following heart-DCT. The phase window was limited to 70–80% of the R-R interval. Scan timing was determined by the peak time of attenuation in the ascending aorta obtained from heart-DCT data. Based on the theory of injection time [14], 259 mgI/kg of CM was administered for the 10-s CM injection, followed by a 30-mL saline flush during inspiratory breath hold. To align the injection speed, 103 mgI/kg was administered for TMIP [13]. The scan parameters for SCCTA were: collimation, 320×0.5 mm; gantry rotation time, 0.275 s; tube potential, 120 kVp; tube current, auto exposure control (540–750 mA); z-coverage, 160 mm. The image reconstruction parameters for SCCTA were: reconstructed field of view, 200 mm; slice thickness, 0.5 mm; section interval, 0.25 mm. SCCTA images acquired with half-scan were reconstructed with FIRST (“cardiac standard” setting).

TMIP-CCTA
The TMIP operation displays the maximal enhancement over time for each voxel from three-dimensional data [10]. Previous studies have reported that TMIP images reconstructed from cerebral CT perfusion data have excellent image quality for assessment of vascular morphology [15]. On the basis of this technique, TMIP images were used for heart-DCT data. TMIP-CCTA was reconstructed from three-phase dynamic-CCTA data, including the phase with peak enhancement of the ascending aorta (Fig. 2). To determine the optimal phase number of...
Qualitative image analysis

All image data sets (30 patients×2 images) were presented in random order and were evaluated independently by two experienced radiologists (radiologist #1, 26 years of experience in cardiac radiology; radiologist #2, 9 years of experience in cardiac radiology). They evaluated image sharpness on a per-three main coronary arteries basis and overall image quality on a per-patient basis. They independently graded image sharpness on a 4-point scale by evaluating aortic wall sharpness (1=blurry, 2=poorer than average, 3=good, 4=sharpest). Overall image quality was graded on a 4-point scale (1=unacceptable, 2=acceptable, 3=good, 4=excellent) [16]. Adequate diagnostic image quality was defined as equal to or higher than a 3 for image sharpness and equal to or higher than a 2 for overall image quality.

Radiation dose of each image

The volume CT dose index (CTDIvol) and the dose length product (DLP) were recorded to estimate the CT radiation dose. The effective dose (ED) at CCTA was derived from the product of DLP and a conversion coefficient for the chest according to European Commission Guidelines on quality criteria in CT (k=0.014 mSv m/Gy/cm) [18].

Statistical analysis

All numeric values are reported as the mean±SD. In terms of qualitative analysis, we averaged the visual scores of each item assessed by the two observers. The Wilcoxon signed-rank test was used for all comparisons of SCCTA and TMIP-CCTA, and p<0.05 was considered a statistically significant difference. Reader agreement was assessed using Cohen's kappa test. The following criteria were used: 0.21–0.40=fair agreement; 0.41–0.60=moderate agreement; 0.61–0.80=substantial agreement; and 0.81–1.0=almost perfect agreement [19]. All statistical analyses were conducted using JMP software (version 12.0.0; SAS, Cary, NC, USA).

RESULTS

Quantitative analysis results

The peak aortic enhancement time derived from 30 patients was 20.2±2.2 seconds. The mean attenuation values of the ascending aorta and coronary arteries were significantly higher in SCCTA than those in TMIP-CCTA (SCCTA vs. TMIP-CCTA: ascending aorta, 465.6±73.9 Hounsfield units (HU) vs. 382.8±87.7 HU, p=0.05; right coronary, 448.7±76.5 HU vs. 333.0±83.9 HU, p<0.05; left coronary, 462.1±74.1 HU vs. 360.7±81.7 HU, p=0.05, respectively). However, the mean image noise was significantly lower in TMIP-CCTA than in SCCTA (TMIP-CCTA vs. SCCTA: 20.0±3.2 HU vs. 28.1±3.6 HU, p<0.05), leading to almost the same SNR between TMIP-CCTA and SCCTA (TMIP-CCTA vs. SCCTA: ascending aorta, 19.3±4.2 vs. 16.9±3.7, p=0.05; right coronary, 16.6±3.7 vs. 16.2±3.8, p=0.59; left coronary, 18.2±4.0 vs. 16.7±3.7, p=0.16, respectively) (Table 2). Results for CNR between TMIP-CCTA and SCCTA (TMIP-CCTA vs. SCCTA: ascending aorta, 19.0±4.2 vs. 15.8±3.2, p=0.05; right coronary, 16.1±3.8 vs. 15.1±3.1, p=0.24; left coronary, 18.2±3.8 vs. 15.8±3.2, p=0.07, respectively) were similar to those of SNR (Table 2).

Qualitative analysis results

The image sharpness of the RCA was not significantly different between TMIP-CCTA and SCCTA, but those of the LAD and LCX were significantly superior in SCCTA (TMIP-CCTA vs. SCCTA: RCA, 3.0±0.52 vs. 3.2±0.57, p=0.11; LAD, 3.1±0.45 vs. 3.5±0.45, p<0.05; LCX, 3.1±0.45 vs. 3.5±0.42, p<0.05, respectively) (Table 3). However, there was no significant difference between TMIP-CCTA and SCCTA in overall image quality (TMIP-CCTA vs. SCCTA: 3.2±0.55 vs. 3.2±0.46, p=0.59).

Table 2. Results of quantitative image analysis

<table>
<thead>
<tr>
<th></th>
<th>TMIP-CCTA</th>
<th>SCCTA</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT attenuation (HU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascending aorta</td>
<td>382.8±87.7</td>
<td>465.6±73.9</td>
<td><0.05</td>
</tr>
<tr>
<td>Proximal RCA</td>
<td>333.0±83.9</td>
<td>448.7±76.5</td>
<td><0.05</td>
</tr>
<tr>
<td>LMT</td>
<td>360.7±81.7</td>
<td>462.1±74.1</td>
<td><0.05</td>
</tr>
<tr>
<td>Image noise (HU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascending aorta</td>
<td>20.0±3.2</td>
<td>28.1±3.6</td>
<td><0.05</td>
</tr>
<tr>
<td>Proximal RCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMT</td>
<td>18.2±4.0</td>
<td>16.7±3.7</td>
<td>0.16</td>
</tr>
<tr>
<td>SNR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascending aorta</td>
<td>19.0±4.2</td>
<td>15.8±3.2</td>
<td><0.05</td>
</tr>
<tr>
<td>Proximal RCA</td>
<td>16.1±3.8</td>
<td>15.1±3.1</td>
<td>0.24</td>
</tr>
<tr>
<td>LMT</td>
<td>18.2±3.8</td>
<td>15.8±3.8</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Data are presented as the mean±standard deviation. SNR: the signal-to-noise ratio, CNR: the contrast-to-noise ratio, RCA: right coronary artery, LMT: left main trunk, HU: Hounsfield units, CT: computed tomography, TMIP-CCTA: temporal maximum intensity projection-coronary computed tomography angiography, SCCTA: standard-CCTA

Table 3. Results of qualitative image analysis

<table>
<thead>
<tr>
<th></th>
<th>TMIP-CCTA</th>
<th>SCCTA</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image sharpness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCA</td>
<td>3.0±0.52</td>
<td>3.2±0.57</td>
<td>0.11</td>
</tr>
<tr>
<td>LAD</td>
<td>3.1±0.45</td>
<td>3.5±0.45</td>
<td><0.05</td>
</tr>
<tr>
<td>LCX</td>
<td>3.1±0.45</td>
<td>3.5±0.42</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Data are presented as the mean±standard deviation. RCA: right coronary artery, LAD: left anterior descending artery, LCX: left circumflex artery, TMIP-CCTA: temporal maximum intensity projection-coronary computed tomography angiography, SCCTA: standard-CCTA
Moreover, TMIP-CCTA achieved diagnostic image quality for all analysis items. The assessment of inter-observer agreement was excellent for image sharpness (weighted kappa=0.94, 0.97, and 0.92 for RCA, LAD, and LAD, respectively) and overall image quality (weighted kappa=0.94). A representative case is shown in Fig. 3.

Radiation and CM dose of each protocol

The CTDIvol, DLP, and ED values and the amount of CM for each scan method are shown in Table 4. There was no significant difference between TMIP-CCTA and SCCTA (4.2±0.68 mSv vs. 4.0±1.9 mSv; p=0.071) in terms of ED. The amounts of CM used for TMIP-CCTA and SCCTA were 16.2±2.6 mL and 40.1±7.3 mL, respectively (p<0.01).

DISCUSSION

This study proposes TMIP-CCTA that combines smaller amounts of CM and dynamic scanning with a 320-row CT. Compared to SCCTA, TMIP-CCTA yielded almost the same SNR and overall image quality despite a 60% reduction in CM dose. This observation is of practical importance because use of CCTA with lower CM doses may reduce the risk of CIN without compromising the quality of diagnostic information, especially in patients with renal insufficiency. Furthermore, there was no significant difference between TMIP-CCTA and SCCTA with respect to radiation dose. Our findings suggest that, depending on the patient’s renal function, heart rate, and pretest probability of CAD, TMIP-CCTA could be performed in place of SCCTA.

The image sharpness values of the LAD and LCX were significantly inferior in TMIP-CCTA compared to SCCTA. This was likely due to misregistration error. The left coronary artery system (LAD and LCX) is smaller in diameter than the RCA [20]. Therefore, the accuracy of non-rigid registration in the LAD
and LCX might be inferior to that in the RCA. Image noise was significantly lower in TMIP-CCTA than in SCCTA. This was likely because of MIP algorithm, which displays the maximal enhancement for each voxel.

The mean attenuation of the ascending aorta and coronary arteries was significantly lower in TMIP-CCTA than in SCCTA. However, the mean coronary attenuation was 347 HU on TMIP-CCTA. This value satisfied the limit for optimal coronary attenuation (>300 HU) [21]. Oda et al. [8] reported that around 210 mgI/kg CM is appropriate for 320-row CCTA with a tube voltage of 80 kVp, while CCTA protocols with less than 210 mgI/kg CM cannot provide sufficient and homogeneous enhancement of the coronary arteries. On the other hand, our study found that TMIP-CCTA with a CM dose of 103 mgI/kg to be almost equal in overall image quality to CCTA with a CM dose of 259 mgI/kg. To our knowledge, a CM dose of 103 mgI/kg is the lowest of any published CCTA study.

CIN is associated with increased mortality rates, and there is a consensus that the most important risk factor for CIN is pre-existing renal insufficiency [22]. Invasive coronary angiography is also a known risk factor for CIN, and the risk for CIN is higher after coronary angiography than after intravenous administration of CM [23]. TMIP-CCTA can be used to identify non-occlusive coronary artery in patients at high risk of CIN.

Heart-DCT can be used in the functional assessment of coronary arteries in that it calculates a novel coronary flow index (CFI). CFI can be used to detect myocardial ischemia derived from intermediate coronary stenosis [24]. Hybrid analysis of CFI and TMIP-CCTA enables functional and morphological assessment of the coronary arteries. Conventional dynamic myocardial perfusion imaging requires additional CCTA scans for coronary evaluation. If our reconstruction protocol is applied to DCT perfusion imaging, functional and anatomic imaging can be performed with a single contrast injection and CT exam.

This study has some limitations. First, the study population was small and from a single institution. Therefore, the incidence of significant coronary stenosis was low. As a result, we were not able to assess diagnostic performance for detection of coronary stenosis. Second, we included only patients with BMI less than 25 kg/m². CCTA images of obese patients tend to be poorer quality because of increased image noise. Therefore, low-tube-voltage and heart-DCT are not suitable for obese or even overweight patients. Validation studies are needed for obese patients. Third, this study excluded patients with heart rate (HR) >65 bpm. In the clinical setting, many patients have higher HR. There is concern that TMIP-CCTA image quality for patients with HR >65 will be degraded due to motion artifact. It is possible that registration error also arises in patients with high HR more often than in patients with low HR. However, in this study, heart-DCT was performed in mid-diastole for patients with lower HR. Therefore, in patients with high HR >65, we infer that heart-DCT scanning at the end of systole might not degrade TMIP image quality.

In conclusion, TMIP-CCTA can decrease CM dose by more than 50% and still provide the same image quality as standard CCTA.

Conflicts of Interest The authors declare that they have no conflict of interest.

REFERENCES

6 CVIA 2019;3(1):1-7
23. Katzberg RW, Newhouse JH. Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe? Radiology 2010;256:21-28.